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ABSTRACT
This paper describes a method for providing real time de-

cision support based on measurements rather than optimizing a
mathematical model. The proposed method is thus beneficial for
systems for which the modelling would be inaccurate, the dy-
namics and complexity of the system would make it difficult to
optimize in real time, or the risk of returning local minima is not
acceptable.

The proposed method is implemented on four fishing vessels.
These vessels are complex and give the skipper many choices re-
lated to how the vessel is operated. The developed tool advises
the crew on in real time on operational decisions, particularly on
the use of various diesel electric and diesel mechanic propulsion
modes, including decisions such as the use use of shaft genera-
tor, direct coupling between main engine and propeller or not,
propeller pitch, etc. This will presumably reduce both fuel con-
sumption and emissions of CO2 and NOX.

Some examples of obtainable results from both onshore
analyses and the onboard application are presented to demon-
strate the methods applicability.

NOMENCLATURE
c The operational cost.
ĉ The normalized operational cost.
f̂c The function for normalizing operational cost.

∗Corresponding author.
†Earlier SINTEF Fisheries and Aquaculture, SINTEF Ocean from 1st January

2017 through a merger internally in the SINTEF Group.

ns The number of solution candidates stored for each combina-
tion of operational demands.

nx Dimension of xxx. nx = nxc +nxd .
nxc Dimension of xxxccc.
nxd Dimension of xxxddd .
ny Dimension of yyy.
xxx Operational choices, xxx =

[
xxxccc

ᵀ xxxddd
ᵀ
]ᵀ

.
xxxccc Continuous operational choices.
xxxddd Discrete operational choices.
yyy Actual system output.
yyyddd Desired system output.
xxxopt(yyyddd) The optimal decision for a desired system output.
xxxbsf Evaluated approximation to xxxopt.
XD(yyyddd) The set of candidate solutions for a specific system

output.
ĈD(yyyddd) The set of normalized costs for the candidate decisions.
R The set of all real numbers.
Z The set of all integers.

INTRODUCTION
Operational efficiency is important for a range of indus-

tries and applications. The task of finding optimum operational
choices in a complex process belongs to the discipline operations
research [1]. The application of advanced analytical methods to
solve the decision problem can improve the profitability or some
other performance indicators significantly [2]. Several methods
may be applicable, such as numerical optimization of a system
model (like model predictive control [3] or mixed integer pro-
gramming [4]), the use of neural networks [5], or developing a
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mathematical model able to directly estimate the best operational
choices as a function of desired output. Skjong et al. [2] proposed
using mixed integer linear programming as a suitable strategy for
optimal unit commitment in ship power systems. Seenumani et
al. [6] exploited time scale separation and a simplified dynamic
model of the power system to achieve real-time optimization.

Fishing vessel operations can be affected by a large variety
of conditions and operation modes. When this is combined with
complex and flexible energy systems, finding the most energy ef-
ficient operational decisions can be challenging. These decisions
are today based on experience, expectations of the near future
and sound operational judgement. Energy audits performed by
Basurko et al. [7] indicate that the energy consumption is largely
impacted by engine conditions and use patterns. Even though a
skipper may utilize their knowledge in operating the vessel, there
may still exist configurations chosen in the past that yielded bet-
ter performance. An analytical method that can utilize knowl-
edge about the vessel is a valuable tool when making these op-
erational choices. Modern ocean-going fishing vessels can be
highly complex, one-of-a-kind machinery, and the operational
profiles are also complex and changing with time. This makes
it difficult and expensive to base an operational decision support
system on mathematical models. Real time measurements are,
however, often easily accessible, because of their high level of
instrumentation.

Utilization of on-board time series measurement has also
previously been applied to statistical analysis of ship perfor-
mance under various sea states [8] and for preventive main-
tenance [9]. The present work is carried out in the research
project Pursense [10]. This is based on the research project IM-
PROVEDO [11], which aimed to gain insight and improve vessel
design and operation through the development of decision sup-
port tools and collection of operational data from fishing vessels.

Contribution
This paper proposes a method that may be beneficial in cases

where the system is complex and difficult to model with suffi-
cient fidelity for real-time optimization. The presented method
uses long-term measurements as a basis for keeping an overview
of how similar situations have been solved in the past, and
then recommends the best known solution amongst these. This
method is able to tell both how well the system performs in the
current situation, as well as which actions should be taken to im-
prove the performance.

GENERAL METHOD
Problem Formulation

Let xxxccc ∈ Rnxc and xxxddd ∈ Znxd denote continuous and discrete
decision variables, respectively. The mapping from inputs to out-
puts are declared by yyy : Rnxc×Znxd →Rny . We regard the system

under consideration to be in steady-state conditions. This means
that we assume that the mapping from system input to output
does not have any dynamics, meaning that it is not time depen-
dent. Suppose the desired system output is yyyddd , also denoted op-
erational demands. Our objective is to find an element in the
set of constrained decision vectors that minimizes some scalar
cost function c : Rnxc ×Znxd → R, and at the same time ensures
that the desired output yyyddd is obtained. Define the nx-dimensional
vector xxx :=

[
xxxccc

ᵀ xxxddd
ᵀ
]ᵀ and the constrained sets X ⊂ Rnxc and

D⊂ Znxd . Our optimization problem can be stated as:

argmin
xxx

c(xxxccc,xxxddd)

s.t. yyy(xxxccc,xxxddd) = yyyddd ,

xxxccc ∈ X,
xxxddd ∈ D,

(1)

where X is a compact convex set and D is the set of possible
values for the discrete decision vector. Note that there may exist
several decision vectors that give the same minimal cost and that
satisfy the constraints of the optimization problem. Let the set
of optimal decision vectors for a given yyyddd be defined as X ?(yyyddd).
An essential challenge when trying to solve this problem is that
we do not have expressions for neither the cost function c(xxxccc,xxxddd)
nor the output function yyy(xxxccc,xxxddd).

Method Description
The approach for solving Eq. (1), where we do not have ex-

plicit definitions for c and yyy, is based on the application of long-
term time series measurements of the operation under consider-
ation. All the historic data form our basis for decision making.
Let xxxbsf be a decision vector that has given the minimal cost for a
specific desired output yyyddd in historic operations. We assume that
the historic operations spans a space of operational choices rich
enough to include the optimal solution to Eq. (1). Therefore, an
approximate solution to Eq. (1) with the corresponding cost is

xxxbsf ≈ xxxopt ∈ X ?(yyyddd), (2a)
copt(xxxc,opt,xxxd,opt)≈ cbsf(xxxc,bsf,xxxd,bsf). (2b)

A typical use case may be situations where yyyddd changes over time.
For this reason, a decision support system would need to resolve
Eq. (1) whenever yyyddd changes. If one imagine an optimal cost
surface as a function of yyyddd , this surface can be highly nonlinear.
The nonlinearity can be due to parameter sensitivity in the opti-
mization problem formulation. In other words, a small change in
yyyddd can give a large change in the optimal cost copt.

If an application uses the approximate solution from Eq. (2),
the above mentioned characteristics make the solution prone to
error due to two effects.
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1. xxxbsf is based on a set of situations where yyy(xxx) ≈ yyyddd . This is
because the historic operational demands are based on mea-
sured values where uncertainties are inevitable.

2. When given a desired yyyddd , interval aggregation around yyyddd is
performed to retrieve the necessary amount of historical data
to find xxxbsf.

In an attempt to mitigate these challenges, we can reformulate the
optimization problem to minimize a normalized cost ĉ instead of
the original c. The motivation for a normalized cost is to reduce
as much as possible its sensitivity to changes in the operational
demands yyyddd . We propose a normalized cost that depends on yyyddd :

ĉ(xxxccc,xxxddd ,yyyddd) :=
c(xxxccc,xxxddd)

f̃c(yyyddd)
, (3)

where f̃c(yyyddd) is an approximation of the total cost given a partic-
ular operational demand. This normalization makes it easier to
compare the optimal cost for variations in yyyddd . Later we will see
that this normalization is useful when comparing costs within a
neighborhood of yyyddd .

In its simplest terms, the objective of the decision support
is: “Our desired system output is yyyddd , what is xxxopt?” We propose
an algorithm that uses the historical data as a basis for solving
Eq. (1). It consists of two distinct processes:

1. Keeping track of and updating the best historic solutions xxxbsf
for all operational demands encountered.

2. Methods to query xxxbsf for a given operation demand.

A great deal of processing of the time series are needed to ensure
that the assumptions regarding the system setup are met before
updating the knowledge database. It consists of, among other
things, finding subsets of the time series where the system is in
a stationary state. Important machinery measurements must be
repeatable and independent of time. We make use of interval
binning [12] of yyyddd to reduce the number of possible operational
demands into a finite number. This makes it possible to store
both the normalized costs and the decision variables in finite-
dimensional data structures. Let us define some sets that facili-
tate concise descriptions of these data structures. The δ -discrete
set is defined as

Dδ := {x ∈ R : ∀z ∈ Z,δ > 0,x = δ z}. (4)

We define the δ -binned mapping b(x;δ ) : R→Dδ as

b(x;δ ) := minargmin
z∈Dδ

|x− z|, (5)

which takes a real number and assigns it to the appropriate bin in-
terval (of width δ ). Define the binning vector ∆ := [δ1, · · · ,δny ]

ᵀ,

where δi > 0. We denote the multi-dimensional binning as
B∆ : Rny →Dδ1 ×·· ·×Dδny

with definition

B∆(yyyddd) :=
[
b(yyyddd,i;δi) · · · b(yyyddd,ny ;δny)

]ᵀ
. (6)

This mapping takes operational demand vectors and assigns them
to appropriate bins, which are hyperrectangles. Suppose the
range of relevant operational demands form closed and con-
nected intervals of interest for each dimension. Denote this hy-
perrectangle as Y ⊂ Rny . The discretized set of operational de-
mands for the region of interest is then

Y := {zzz ∈ Rny : ∀yyyddd ∈ Y,zzz = B∆(yyyddd)}. (7)

The cardinality |Y| indicates the number of different bins for
which we partition the space of operational demands. For each
element of Y we need a mapping to the optimal decision xxxbsf.
Since there are many candidate decision vectors that may give
the optimal cost, we need to keep track of promising decision
vectors and their corresponding normalized costs. Define the set
of candidate solutions that belongs to a particular desired output
yyyddd as

XD(yyyddd) := {xxx ∈ X : B∆(yyyddd) = B∆(yyy(xxxccc,xxxddd))}. (8)

For each element of XD(yyyddd) there is a unique map to the normal-
ized cost. The set of candidate costs are given by the set

ĈD(yyyddd) := {z ∈ R : ∀xxx ∈ XD(yyyddd),z = ĉ(xxxccc,xxxddd ,yyyddd)}. (9)

The calculated optimal decision for a given yyyddd is approximated
as

xxxbsf(yyyddd) = min argmin
xxx∈XD(yyyddd)

ĉ(xxxccc,xxxddd ,yyyddd). (10)

This function returns the least element that has the smallest
recorded normalized cost for that desired system output (also
known as copt(xxxc,opt,xxxd,opt)).

For each discretized operational demand (element of Y) we
need to hold two sets, namely XD and the corresponding cost
set ĈD. The number of elements in these sets is limited to ns.
The procedure for updating the elements in XD and ĈD is as fol-
lows. First, the correct bin is identified by inspecting the ob-
served value of the system output yyy. Then, the measured decision
vector is compared against existing elements in XD. If a similar
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element exist*, the associated normalized cost is updated by a
low-pass filter, for instance with exponential smoothing:

ĉnew = (1−α)ĉprevious +α ĉmeasured, (11)

where α ∈ (0,1]. Otherwise, if the observed value xxx is not one
of the stored candidates, the handling of this measurements will
depend on its normalized cost value. A new candidate solution
replaces an existing candidate if only if |XD| = ns and the new
cost is smaller than the old one.

Remark 1. Interval binning of the operational decision space
is a compromise. On the one hand, too small bins may lead to
situations where a bin only has a sparse set of data as a basis
for the decision making. The choice of xxxbsf may then taken based
on only a handful of observation (or worse: none). On the other
hand, larger bins will ensure a better basis for decision making.
The downside is that for large bins, the optimal decision may
vary within the bin.

CASE STUDY
The particular problem forming the background for this pa-

per is choosing operational decisions for ships with many propul-
sion modes, such as various diesel electric and diesel mechanic
configurations. This was part of the project PurSense [10], where
four fishing vessels of comparable specifications were instru-
mented for gathering operational data and for presenting recom-
mendations to the crew.

Vessel Integration and Data Collection
There are large variations with respect to how the vessels are

equipped. As a generic framework has been the goal of this work,
the integration has had to support different physical layouts as
well as differences in protocols and available sensors. To reduce
the amount of redundant work, the architecture focus on keeping
such differences at as low a level as possible. This provides a
common vessel interface for subsequent tools development. The
actual interface is using a framework named Ratatosk developed
by SINTEF Fisheries and Aquaculture, which is again based on
the Data Distribution System (DDS) [13, 14] framework. The
acquired data is cached on board the vessels while at sea and
then sent to the SINTEF Marine Data Centre when the vessel is
within range of mobile broadband connections.

Adaptation of method to case study
The general method was adapted to the specifics of the four

vessels taking part in the case study. Specifically, the following
definitions were used:

∗Two elements xxx and zzz are considered similar if xxxddd ≡ zzzddd , and xxxccc ≈ zzzccc, e.g.
using interval binning.

xxxccc =


MRPM
PRPM

PP
PT I−PTO

 , (12a)

xxxddd =

 PT I > 0
PTO > 0∣∣∣ PRPM

MRPM
−Gr

∣∣∣< a

 , (12b)

yyy =

u
T
e

 , (12c)

f̃c = k1u2 + e, (12d)

where MRPM is main engine speed, PRPM is propeller speed, PP is
propeller pitch, PT I is power to electric propulsion, PTO is shaft
generator power, Gr is gear ratio, a is a small allowance, u is ves-
sel speed, T is vessel thrust and e is electric power consumption.
Gr is chosen according to the recorded gear ratio when propeller
and main engine is connected through the main gear. a is cho-
sen according to the variations seen in the measurements to as
accurately as possible define when the connection is active. k1
is chosen to approximate the measured cost. The cost function c
in the case study is the sum of the fuel consumption of the main
engine and the auxiliary engines.

Offline Analysis
The purpose of offline analysis is to gain insights in how the

different propulsion modes affect fuel consumption. This anal-
ysis combine data from all vessels subject to various operation
conditions and vessel demands. Three sequential steps comprise
the analysis. The first step corrects all measurements according
to post-acquisition knowledge of scaling, variable renames, and
sensor errors. The second step extracts representative combina-
tions of values, taking into account events such as outliers and
instability. The third step consists of various analyses to both as-
sure the quality of the measurements and to gain insight in the
vessel operations. Some results from these analyses are visual-
ized in the Figs. 1 to 5, which are explained below.

The Operational Profiles of the Vessels The anal-
ysis is based on mapping thrust to normalized thrust. Normal-
ized thrust is defined as an approximation to the ratio between
actual thrust and the thrust expected for the same speed during
‘good’ conditions (e.g. no waves, empty vessel and no fishing
gear). This mapping makes us able to compare measurements
that are taken at different times but with similar additional ship
resistance. The normalization function used in the present work
is in the form:
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T̂ =
T

k2 + k3u+ k4u2 , (13)

where T̂ is normalized thrust and k2, k3 and k4 are constants
chosen to make the normalized thrust speed independent, and to
make a value of 1.0 representative of ‘good’ conditions. Figure
1 shows the distribution of vessel speed and normalized thrust
averaged for the vessels that are part of this study. The colors in
this figure denotes the frequency of every combination of vessel
speed and normalized thrust. The figure indicates that the nor-
malized thrust is speed-independent, and that the value 1.0 forms
a rough lower limit. This is a sign that the resulting normalized
thrust is a good approximation of the ratio between actual thrust
and that expected for beneficial conditions. If interpreted with
the context of understanding ship operational patterns, we can
observe that common ship speeds are between 9 and 14 knots
with thrust ranging from approximately 80 % to 160 % of what
we expect under ‘good’ conditions (normalized thrust is between
0.8 to 1.6). We can also observe an area centered at 4 knots and
normalized thrust 9. This region indicates pelagic trawling. An
interesting observation of the thrust-speed plot is the quadrati-
cally decaying front for increasing speeds (the limit against the
white area in the upper right half of the plot). For white regions
there are no measurements available. The front probably indi-
cates the maximum thrust the vessel is able to produce for each
speed.

FIGURE 1. FREQUENCY DISTRIBUTION OF VESSEL SPEED
AND NORMALIZED THRUST.

The Effect of Operational Decisions on Vessel Fuel
Consumption. Figures 2 to 5 show the average normalized
fuel consumption for variations in vessel demands and the opera-
tional mode selected by the crew. The normalized fuel consump-
tion is an abstraction of the fuel consumption meant to emphasize
the differences between choices, while reducing the variations
in fuel consumption for different samples within the same his-
togram bin. Each curve represents a specific mode of operation
for the energy system. Specifically, this is defined by the condi-
tions: Are the propeller and the main engine directly coupled?
Is electric power used for propulsion? Is the main engine used
for generating electric power? The subset of modes indicated in
these figures are as follows:

DE auxiliary engines: The propulsion is powered by the auxil-
iary engines through an electric motor.

DE main engine : The propulsion is powered by the main en-
gine through an electric motor.

Split: The propulsion is powered by the main engine, and the
shaft generator of the main engine is not active. The electri-
cal system is powered by the auxiliary engines.

Shaft generator: The propulsion is powered by the main en-
gine, and the shaft generator of the main engine is active.
The auxiliary engines are shut down.

To limit the number of figures, only figures covering the
most common operational conditions are shown in this paper.
These figures are by no means representative for the ships op-
eration and optimum decisions as a whole, but they give useful
information about how the choice of operational mode affects
fuel consumption.

FIGURE 2. NORMALIZED FUEL CONSUMPTION FOR SPEED
10 KNOTS AND NORMALIZED THRUST 1.0.
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Figure 2 shows how the normalized fuel consumption de-
pends on operational mode for varying electrical consumption,
given 10 knots speed and normalized thrust equal to 1. It is ob-
vious that for these conditions, DE auxiliary engines is the best
mode for electric consumption less than 800 kW. Lack of val-
ues for larger electric consumptions for the various modes is due
to the fact that the vessels have not operated sufficiently long at
these combination of conditions and operational decisions. This
could be due to energy system limitations or crew decisions, or
there may not have been such operational demands.

FIGURE 3. NORMALIZED FUEL CONSUMPTION FOR ELEC-
TRIC POWER CONSUMPTION 300 KW AND NORMALIZED
THRUST 1.0.

Figure 3 shows how the normalized fuel consumption de-
pends on operational mode for varying vessel speed, given 300
kW electric power consumption and normalized thrust equal to
1. Again, it is obvious that DE auxiliary engines mode is benefi-
cial in most of these situations where it is possible. The data also
indicates that as the speed increases, the efficiency of this mode
rapidly deteriorates in relation to other propulsion modes. This
is to be expected, as the drawbacks of diesel mechanic propul-
sion (inability to reduce propeller speed below a limit) decreases
with increasing speed and the drawback of diesel electric modes
(efficiency of energy conversions) increases. It is, however, in-
teresting that the same trend is not seen for DE main engine. This
can be due to measurement errors, but it is also possible that the
increasing efficiency of the main engine at increasing loads con-
tributes to this effect.

Figure 4 shows how the normalized fuel consumption de-
pends upon operational mode for varying normalized thrust,
given a speed of 10 knots and an electric power consumption
of 300 kW. It is seen that in this situation, DE auxiliary engines

FIGURE 4. NORMALIZED FUEL CONSUMPTION FOR ELEC-
TRIC POWER CONSUMPTION 300 KW AND SPEED 10 KNOTS.

performs best in the situations where it has been used. When
the normalized thrust exceeds 1.25, Shaft generator is the most
energy efficient choice.

FIGURE 5. NORMALIZED FUEL CONSUMPTION FOR ELEC-
TRIC POWER CONSUMPTION 300 KW AND SPEED 4 KNOTS.

Figure 5 shows how the normalized fuel consumption de-
pends on operational mode for varying normalized thrust, given a
speed of 4 knots and an electric power consumption of 300 kW. It
is seen that in this situation, DE auxiliary engines performs best
in the situations where it has been used. When the normalized
thrust exceeds 3.5, Shaft generator is the best performing choice.
This low speed is interesting since it is a typical trawling speed,
which gives us data for high thrust levels.
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Real-Time Advise on Current Operation
The aforementioned data structures keep an overview of how

previous operational choices have affected the fuel consumption
of the vessel for various combinations of operational demands.
This makes it possible to not only find in real time if similar
operational demands have been met more efficiently in the past,
but also to inform the crew of the most beneficial choices made
for this situation. This is implemented as a real time decision
support system onboard the vessels. This tool contains various
screens for informing the crew of the vessel efficiency, improve-
ment potential and the historically best choices. A screenshot
of one screen of this tool is shown in Fig. 6. Other screens in-
form the crew of e.g. how the vessel was operated when the best
efficiency was achieved.

FIGURE 6. REAL-TIME DECISION SUPPORT TOOL SHOWING
EXPECTED NORMALIZED FUEL CONSUMPTION AS A FUNC-
TION OF SPEED, FOR PRESENT ELECTRIC POWER CONSUMP-
TION AND SPEED.

CONCLUSIONS
Results

A generic framework for decision support based on find-
ing the historical best solutions are presented. The framework
is used in a case study on four similar vessels. This case study
includes both offline onshore analyses and a tool for real-time de-
cision support on board the vessels. The results seem promising,
and have already given improved insight in how the efficiency of
these vessels depend on the operational decisions. Still, there are
some limitations to both the method and the results of the case
study.

Method limitations
A decision support tool based on this method cannot evalu-

ate (and thereby suggest) combinations of demands and choices
which have not been previously measured. In addition, if only
few of the best choices are stored, sporadic overly positive esti-
mates for operational decisions not currently one of the ns stored
solution candidates may cause the history for more beneficial op-
erational points to be lost.

Case study limitations
Accurate measurements of fuel consumption is both difficult

and expensive to obtain, since marine diesel engines include a
return flow of fuel. Especially for small power levels, one needs
to measure both a large fuel flow to the engine and a slightly
smaller fuel flow from the engine. Any inaccuracy in any of the
measurements will therefore be very much amplified in the esti-
mate of the fuel consumption. To improve the accuracy, the flow
measurements for the main engines are replaced by an estimate
based on the fuel rack position and the engine speeds. This seems
to improve the results, but there is still a possible bias caused by
the lack of calibration between the fuel consumption estimates
of the main engines and the auxiliary engines. Such a bias would
cause a strong bias towards some operational modes and reduce
the benefits of this system significantly.

Another possible source of errors is the fact that propeller
efficiency is assumed constant for a given combination of vessel
speed, propeller speed and propeller pitch. Variations in pro-
peller efficiency caused by effects such as ventilation, cavitation
and ship movements are not considered.

FURTHER WORK
It will be important to calibrate the fuel consumption esti-

mates of the main and auxiliary engines, to mediate the possible
problems described above. Periods where either main or aux-
iliary engines are stopped will be identified, and consumption
estimates will be compared to fuel tank measurements. If such
periods can be found, this is expected to reduce any bias between
use of main engine vs. auxiliary engines.

To address the method’s inability to recommend solutions
for which sufficiently data doesn’t exist, the method could be
preseeded with calculated estimates. If the benefits would out-
weigh the disadvantages are, however, not clear.
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